Abstract
Small extracellular vesicles (sEVs) are heterogeneous membrane-bound vesicles that carry numerous bioactive molecules. Studies have reported that sEVs carrying PD-L1 on the surface could contribute to immunosuppression; however, the precise mechanisms are unclear. To fully dissect their mode of action, it requires qualified methods to specifically isolate natural PD-L1-positive sEVs from heterogeneous sEVs. This study reported an aptamer-assisted capture-and-release strategy for traceless isolation of PD-L1-positive sEVs. The PD-L1 aptamer-anchored magnetic microspheres enable the specific capture of PD-L1-positive sEVs. The traceless release of captured PD-L1-positive sEVs was triggered by competition of complementary oligonucleotides, endowing the obtained label-free PD-L1-positive sEVs with natural properties. Benefited from this traceless isolation strategy, the distinct molecule profiles in adhesion and immuno-regulation between PD-L1-positive and PD-L1-negative sEVs were revealed. Compared to PD-L1-negative sEVs, PD-L1-positive sEVs were much more concentrated in cadherin binding, accompanied by increased adhesion to lymphatic endothelial cells and T cells but decreased adhesion to the extracellular matrix. Moreover, PD-L1-positive sEVs could transfer their enriched immunosuppressive "synapse"-related proteins to antigen-presenting cells, thereby inducing a tolerogenic-like phenotype. In summary, the present work dissects the subpopulation signature and action mode of PD-L1-positive sEVs for the first time and provides a general approach to the traceless isolation of sEV subpopulations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.