Abstract

In this paper, we described a temperature responsive nano-system that can regulate activity of enzyme with different temperature. Temperature responsive polymer poly(N-isopropylacrylamide) (PNIPAAm), with low critical solution temperature of 32°C, was synthesized with thiol modification. PNIPAAm and thrombin aptamer were co-functionalized on the surface of gold nanoparticles for effective regulation of thrombin activity with different temperature. On the one hand, we studied the thermal responsive properties of this inhibitor via UV–visible spectroscopy. On the other hand, we investigated the regulation of thrombin activity by this platform with different temperature. The PNIPAAm chains could extend and shrink with different temperature, which suggested that PNIPAAm on the surface of gold nanoparticles could regulate interaction between thrombin and aptamer according to temperature changing. At 25°C, PNIPAAm was hydrophilic extended state, which blocked the interaction between thrombin and aptamer on the surface of gold nanoparticles, therefore thrombin activity had no change. On the contrary, at 37°C, PNIPAAm transformed from hydrophilic extended state to hydrophobic shrank state, allowing the aptamer to capture thrombin, inhibiting the activity of thrombin. More interestingly, this regulation was reverse to normal condition, where 37°C was always the optimum reaction temperature for most of human enzymes. This system we prepared was opposite, which was capable of inhibiting the thrombin activity at 37°C. Furthermore, this was the first report of regulation of thrombin activity using this temperature responsive platform.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.