Abstract
SummaryDNA metabarcoding is an emerging approach to assess and monitor biodiversity worldwide and consequently the number and size of data sets increases exponentially. To date, no published DNA metabarcoding data processing pipeline exists that is (i) platform independent, (ii) easy to use [incl. graphical user interface (GUI)], (iii) fast (does scale well with dataset size) and (iv) complies with data protection regulations of e.g. environmental agencies. The presented pipeline APSCALE meets these requirements and handles the most common tasks of sequence data processing, such as paired-end merging, primer trimming, quality filtering, clustering and denoising of any popular metabarcoding marker, such as internal transcribed spacer, 16S or cytochrome c oxidase subunit I. APSCALE comes in a command line and a GUI version. The latter provides the user with additional summary statistics options and links to GUI-based downstream applications.Availability and implementationAPSCALE is written in Python, a platform-independent language, and integrates functions of the open-source tools, VSEARCH (Rognes et al., 2016), cutadapt (Martin, 2011) and LULU (Frøslev et al., 2017). All modules support multithreading to allow fast processing of larger DNA metabarcoding datasets. Further information and troubleshooting are provided on the respective GitHub pages for the command-line version (https://github.com/DominikBuchner/apscale) and the GUI-based version (https://github.com/TillMacher/apscale_gui), including a detailed tutorial.Supplementary information Supplementary data are available at Bioinformatics online.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.