Abstract
Many parallelization techniques have been proposed to enhance the performance of the Apriori-like frequent itemset mining algorithms. Characterized by both map and reduce functions, MapReduce has emerged and excels in the mining of datasets of terabyte scale or larger in either homogeneous or heterogeneous clusters. Minimizing the scheduling overhead of each map-reduce phase and maximizing the utilization of nodes in each phase are keys to successful MapReduce implementations. In this paper, we propose three algorithms, named SPC, FPC, and DPC, to investigate effective implementations of the Apriori algorithm in the MapReduce framework. DPC features in dynamically combining candidates of various lengths and outperforms both the straight-forward algorithm SPC and the fixed passes combined counting algorithm FPC. Extensive experimental results also show that all the three algorithms scale up linearly with respect to dataset sizes and cluster sizes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.