Abstract

ABSTRACT Streamflow forecasting plays an important role in ensuring the reliable supply of electricity in countries heavily reliant on hydropower. This paper proposes a novel framework that integrates various hydrological models, climate models, and observational data to develop a comprehensive forecasting system. Three families of models were employed: seasonal forecasting climate models integrated with hydrological rainfall-runoff models; stochastic or machine learning models utilizing endogenous variables, and stochastic or machine learning models that consider exogenous variables. The hyper-multimodel framework could successfully increase the overall performance of the scenarios generated through the use of the individual models. The quality of the final scenarios generated was directly connected to the performance of the individual models. Therefore, the proposed framework has potential to improve hydrological forecast for the Brazilian electricity sector with the use of more refined and calibrated individual models.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call