Abstract

Protein-RNA interactions play a critical role in various biological processes. The accurate prediction of RNA-binding residues in proteins has been one of the most challenging and intriguing problems in the field of computational biology. The existing methods still have a relatively low accuracy especially for the sequence-based ab-initio methods. In this work, we propose an approach aPRBind, a convolutional neural network-based ab-initio method for RNA-binding residue prediction. aPRBind is trained with sequence features and structural ones (particularly including residue dynamics information and residue-nucleotide propensity developed by us) that are extracted from the predicted structures by I-TASSER. The analysis of feature contributions indicates the sequence features are most important, followed by dynamics information, and the sequence and structural features are complementary in binding site prediction. The performance comparison of our method with other peer ones on benchmark dataset shows that aPRBind outperforms some state-of-the-art ab-initio methods. Additionally, aPRBind can give a better prediction for the modeled structures with TM-score≥0.5, and meanwhile since the structural features are not very sensitive to the refined 3D structures, aPRBind has only a marginal dependence on the accuracy of the structure model, which allows aPRBind to be applied to the RNA-binding site prediction for the modeled or unbound structures. The source code is available at https://github.com/ChunhuaLiLab/aPRbind. Supplementary data are available at Bioinformatics online.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.