Abstract

In a wireless sensor network, data from various sensors are gathered to estimate the system-state of a process system. However, adversaries aim at distorting the estimation, for which they may infiltrate sensors or position additional devices in the environment. For authentication, the receiver can evaluate the integrity of measurements from different sensors jointly with the temporal integrity of channel measurements from each sensor. Therefore, we design a security protocol, in which Kalman filters predict the system-state and the channel-state values. Then, the received data is authenticated by a hypothesis test. We theoretically analyze the adversarial success probability and the reliability in two ways, based on chi-square and Gaussian approximations. The two approximations are exact for small and large data vectors, respectively. Hence, the Gaussian approximation is suitable for analyzing massive single-input multiple-output (SIMO) setups. This approximation is adapted to channel hardening, which occurs in massive SIMO fading channels. As adversaries always look for the weakest point, a time-independent security level is required. Hence, the approximations are used to propose time-varying thresholds for the hypothesis test, which approximately attain a constant security level. Numerical results show that either the security level or the threshold value can be time-independent, but not both.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.