Abstract

In this paper we review a series of developments over the last 15 years in which a general method for the approximative solution of finite discrete time optimal stopping and choice problems has been developed. This method also allows to deal with multiple stopping and choice problems and to deal with stopping or choice problems for some classes of dependent sequences. The basic assumption of this approach is that the sequence of normalized observations when embedded in the plane converges in distribution to a Poisson or to a cluster process. For various classes of examples the method leads to explicit or numerically accessible solutions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.