Abstract
Even after decades of sonar design, approximations to the directivity factor (DF) or index of an array, are often used inappropriately. Many of the approximations commonly used provide accurate directivity approximations for only the simplest of array geometries. As the array's size, shape, weighting, and complexity increase, there is a renewed need for better directivity approximations. Directivity is defined as the ratio of the output signal-to-noise (SNR) of an array to the input SNR at an omnidirectional element in a spherically isotropic noise field. Calculation of directivity is obtained by integrating the magnitude-squared response of the array over all angles of incidence. In spherical coordinates, these arrival angles are denoted by an azimuthal angle /spl theta/ and a polar angle /spl phi/. Hence, calculation of the directivity requires a two-fold integration over the angular space defined by the azimuthal and polar angles. For complex, large-size arrays consisting of thousands of array elements, directivity calculations using numerical integration procedures can be time consuming, even on state-of-the-art computing systems. This report provides a number of accurate formulas for estimating the directivity of linear, planar, and volumetric apertures and arrays, which are allowed to have arbitrary shading coefficients, steering angles, and directional array element responses.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.