Abstract
In this paper, we mainly focus on the sums of non-negative integer-valued 1-dependent random variables and its approximation to the power series distribution. We first discuss some relevant results for power series distribution such as the Stein operator, uniform and non-uniform bounds on the solution of the Stein equation. Using Stein’s method, we obtain error bounds for the approximation problem considered. The obtained results can also be applied to the sums of m-dependent random variables via appropriate rearrangements of random variables. As special cases, we discuss two applications, namely, 2-runs and (k1,k2)-runs, and compare our bounds with existing bounds.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.