Abstract

During the last years a new approach to construct safe block and stream ciphers has been developed using the theory of dynamical systems. Since a block cryptosystem is generally, from the mathematical point of view, a family (parametrized by the keys) of permutations of n-bit numbers, one of the main problems of this approach is to adapt the dynamics defined by a map f to the block structure of the cryptosystem. In this paper we propose a method based on the approximation of f by periodic maps Tn (v.g. some interval exchange transformations). The approximation of automorphisms of measure spaces by periodic automorphisms was introduced by Halmos and Rohlin. One important aspect studied in our paper is the relation between the dynamical properties of the map f (say, ergodicity or mixing) and the immunity of the resulting cipher to cryptolinear attacks, which is currently one of the standard benchmarks for cryptosystems to be considered secure. Linear cryptanalysis, first proposed by M. Matsui, exploits some statistical inhomogeneities of expressions called linear approximations for a given cipher. Our paper quantifies immunity to cryptolinear attacks in terms of the approximation speed of the map f by the periodic Tn. We show that the most resistant block ciphers are expected when the approximated dynamical system is mixing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call