Abstract
A mathematical model of reaction-diffusion problem with Michaelis-Menten kinetics in catalyst particles of arbitrary shape is investigated. Analytical expressions of the concentration of substrates are derived as functions of the Thiele modulus, the modified Sherwood number, and the Michaelis constant. A Taylor series approach and the Akbari-Ganji's method are utilized to determine the substrate concentration and the effectiveness factor. The effects of the shape factor on the concentration profiles and the effectiveness factor are discussed. In addition to their simple implementations, the proposed analytical approaches are reliable and highly accurate, as it will be shown when compared with numerical simulations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.