Abstract
AbstractThe article develops a theorem which shows that the Lanchester linear war equations are not in general equal to the Kolmogorov linear war equations. The latter are time‐consuming to solve, and speed is important when a large number of simulations must be run to examine a large parameter space. Run times are provided, where time is a scarce factor in warfare. Four time efficient approximations are presented in the form of ordinary differential equations for the expected sizes and variances of each group, and the covariance, accounting for reinforcement and withdrawal of forces. The approximations are compared with “exact” Monte Carlo simulations and empirics from the WWII Ardennes campaign. The band spanned out by plus versus minus the incremented standard deviations captures some of the scatter in the empirics, but not all. With stochastically varying combat effectiveness coefficients, a substantial part of the scatter in the empirics is contained. The model is used to forecast possible futures. The implications of increasing the combat effectiveness coefficient governing the size of the Allied force, and injecting reinforcement to the German force during the Campaign, are evaluated, with variance assessments. © 2005 Wiley Periodicals, Inc. Naval Research Logistics, 2005.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.