Abstract
The minimum distance approach for reconstructing a positive function based on knowledge of finitely many linear functional values is examined. Two important classes of directed distances for signal processing and statistical inference are discussed. By imposing conditions analogous to those satisfied by linear projections in Hilbert space, two logarithmic entropy principles are derived. One of these involves the Itakura–Saito distortion measure of communication theory and uniquely extends Burg's maximum entropy method to incorporate prior knowledge. The other uses the Kullback–Leibler distance of statistics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.