Abstract

Traveling Salesman, Steiner Tree, and many other famous geometric optimization problems are NP-hard. Since we do not expect to design efficient algorithms that solve these problems optimally, researchers have tried to design approximation algorithms, which can compute a provably near-optimal solution in polynomial time. We survey such algorithms, in particular a new technique developed over the past few years that allows us to design approximation schemes for many of these problems. For any fixed constant c> 0, the algorithm can compute a solution whose cost is at most (1 + c) times the optimum. (The running time is polynomial for every fixed c> 0, and in many cases is even nearly linear.) We describe how these schemes are designed, and survey the status of a large number of problems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.