Abstract

We examine the necessary and sufficient complexity of neural networks to approximate functions from different smoothness spaces under the restriction of encodable network weights. Based on an entropy argument, we start by proving lower bounds for the number of nonzero encodable weights for neural network approximation in Besov spaces, Sobolev spaces and more. These results are valid for all sufficiently smooth activation functions. Afterwards, we provide a unifying framework for the construction of approximate partitions of unity by neural networks with fairly general activation functions. This allows us to approximate localized Taylor polynomials by neural networks and make use of the Bramble–Hilbert Lemma. Based on our framework, we derive almost optimal upper bounds in higher-order Sobolev norms. This work advances the theory of approximating solutions of partial differential equations by neural networks.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.