Abstract

ABSTRACTTensor Product Distributed Compensation (TPDC) is a recently established controller design framework, that links TP model transformation and Parallel Distributed Compensation (PDC) framework. TP model transformation converts different models to a common representational form: the TP model form. The primary aim of this paper is to investigate the approximation capabilities of TP model forms, because the universal applicability of TPDC framework strongly relies on it. We point out that the set of functions that can be approximated arbitrarily well by TP forms with bounded number of components lies no‐where dense in the set of continuous functions. Consequently, in a class of control problems this property necessitates the usage of tradeoff techniques between the accuracy and the complexity of the TP form, which is easily feasible within the TPDC framework unlike in analytic models.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.