Abstract
We construct the blending-type modified Bernstein–Durrmeyer operators and investigate their approximation properties. First, we derive the Voronovskaya-type asymptotic theorem for this type of operator. Then, the local and global approximation theorems are obtained by using the classical modulus of continuity and K-functional. Finally, we derive the rate of convergence for functions with a derivative of bounded variation. The results show that the new operators have good approximation properties.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.