Abstract

Optimization problems that involve discrete variables are exposed to the conflict between being a powerful modeling tool and often being hard to solve. Infinite-dimensional processes, as e.g. described by differential equations, underlying the optimization may lead to the need to solve for distributed discrete control variables. This work analyzes approximation arguments that replace the need for solving the optimization problem by the need for first solving a relaxation and second computing appropriate roundings to regain discrete controls. We provide sufficient conditions on rounding algorithms and their grid refinement strategies that allow to prove approximation of the relaxed controls by the discrete controls in weaker topologies, a feature due to the infinite-dimensional vantage point. If the control-to-state mapping of the underlying process exhibits suitable compactness properties, state vector approximation follows in the norm topology as well as, under additional assumptions, optimality principles of the computed discrete controls. The conditions are verified for representatives of the family of Sum-Up Rounding algorithms. We apply the arguments on different classes of mixed-integer optimization problems that are constrained by partial differential equations. Specifically, we consider discrete control inputs, which are distributed in the time domain, for evolution equations that are governed by a differential operator that generates a strongly continuous semigroup, discrete control inputs, which are distributed in multi-dimensional spatial domains, for elliptic boundary value problems and discrete control inputs, which are distributed in space-time cylinders, for evolution equations that are governed by differential operators such that the corresponding Cauchy problem satisfies maximal parabolic regularity. Furthermore, we apply the arguments outside the scope of partial differential equations to a signal reconstruction problem. Computational results illustrate the findings.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call