Abstract

The present article is a continuation of the work done by Aral and Erbay [ 1 ]. We discuss the rate of convergence of the generalized Baskakov operators considered in the above paper with the aid of the second order modulus of continuity and the unified Ditzian Totik modulus of smoothness. A bivariate case of these operators is also defined and the degree of approximation by means of the partial and total moduli of continuity and the Peetre's K-functional is studied. A Voronovskaya type asymptotic result is also established. Further, we construct the associated Generalized Boolean Sum (GBS) operators and investigate the order of convergence with the help of mixed modulus of smoothness for the Bogel continuous and Bogel differentiable functions. Some numerical results to illustrate the convergence of the above generalized Baskakov operators and its comparison with the GBS operators are also given using Matlab algorithm.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.