Abstract

A solution algorithm for the linear/nonlinear Stokes---Darcy coupled problem is proposed and investigated. The coupled system is formulated as a constrained optimal control problem, where a flow balance is forced across the interface, inflow, and outflow boundaries by minimizing a suitably defined functional. Optimization is achieved by exploiting a Neumann type boundary condition imposed on each subproblem as a control. A numerical algorithm is presented for a least squares functional whose solution yields a minimizer of the constrained optimization problem. Numerical experiments are provided to validate accuracy and efficiency of the algorithm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.