Abstract

In this paper, we study spectral properties of self-adjoint operators on a large class of geometries given via sofic groups. We prove that the associated integrated densities of states can be approximated via finite volume analogues. This is investigated in the deterministic as well as in the random setting. In both cases, we cover a wide range of operators including in particular unbounded ones. The large generality of our setting allows one to treat applications from long-range percolation and the Anderson model. Our results apply to operators on $${\mathbb{Z}^d}$$ , amenable groups, residually finite groups and therefore in particular to operators on trees. All convergence results are established without an ergodic theorem at hand.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.