Abstract

We present a multilayer Saint-Venant system for the numerical simulation of free surface density-stratified flows over variable topography. The proposed model formally approximates the hydrostatic Navier–Stokes equations with a density that varies depending on the spatial and temporal distribution of a transported quantity such as temperature or salinity. The derivation of the multilayer model is obtained by a Galerkin-type vertical discretization of the Navier–Stokes system with piecewise constant basis functions. In contrast with classical multilayer models in the literature that assume immiscible fluids, we allow here for mass exchange between layers. We show that the multilayer system admits a kinetic interpretation, and we use this result to formulate a robust finite volume scheme for its numerical approximation. Several numerical experiments are presented, including simulations of wind-driven stratified flows.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.