Abstract

We consider the problem of finding a shortest rectilinear Steiner tree for a given set of points in the plane in the presence of rectilinear obstacles. The Steiner tree is allowed to run over obstacles; however, if we intersect the Steiner tree with some obstacle, then no connected component of the induced subtree must be longer than a given fixed length L. This kind of length restriction is motivated by its application in VLSI design where a large Steiner tree requires the insertion of buffers (or inverters) which must not be placed on top of obstacles. We show that the length-restricted Steiner tree problem can be approximated with a performance guarantee of 2 in O(n logn) time, where n denotes the size of the associated Hanan grid. Optimal length-restricted Steiner trees can be characterized to have a special structure. In particular, we prove that a certain graph, which is a variant of the Hanan grid, always contains an optimal solution. Based on this structural result, we can improve the performance guarantee of approximation algorithms for the special case that all obstacles are of rectangular shape or of constant complexity, i.e. they are represented by at most a constant number of edges. For such a scenario, we give a $\frac{5}{4}\alpha$ -approximation and a $\frac{2k}{2k-1}\alpha$ -approximation for any integral k ≥ 4, where α denotes the performance guarantee for the ordinary Steiner tree problem in graphs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.