Abstract

In this paper, we generalize a sequence of positive linear operators introduced by Ismail and May and we study some of their approximation properties for different classes of continuous functions. First, we estimate the error of approximation in terms of the usual modulus of continuity and the second-order modulus of Ditzian and Totik. Then, we characterize the bounded functions that can be approximated uniformly by these new operators. In the last section, we obtain the most important results of the paper. We give the complete asymptotic expansion for the operators and we deduce a Voronovskaya-type theorem, results that hold true for smooth functions with exponential growth.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.