Abstract

A method is provided for approximating random slow manifolds of a class of slow–fast stochastic dynamical systems. Thus approximate, low dimensional, reduced slow systems are obtained analytically in the case of sufficiently large time scale separation. To illustrate this dimension reduction procedure, the impact of random environmental fluctuations on the settling motion of inertial particles in a cellular flow field is examined. It is found that noise delays settling for some particles but enhances settling for others. A deterministic stable manifold is an agent to facilitate this phenomenon. Overall, noise appears to delay the settling in an averaged sense.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.