Abstract

We introduce a general a priori convergence result for the approximation of parametric derivatives of parametrized functions. We consider the best approximations to parametric derivatives in a sequence of approximation spaces generated by a general approximation scheme, and we show that these approximations are convergent provided that the best approximation to the function itself is convergent. We also provide estimates for the convergence rates. We present numerical results with spaces generated by a particular approximation scheme—the Empirical Interpolation Method—to confirm the validity of the general theory.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.