Abstract

In this work, we consider the approximate reconstruction of high-dimensional periodic functions based on sampling values. As sampling schemes, we utilize so-called reconstructing multiple rank-1 lattices, which combine several preferable properties such as easy constructability, the existence of high-dimensional fast Fourier transform algorithms, high reliability, and low oversampling factors. Especially, we show error estimates for functions from Sobolev Hilbert spaces of generalized mixed smoothness. For instance, when measuring the sampling error in the L2-norm, we show sampling error estimates where the exponent of the main part reaches those of the optimal sampling rate except for an offset of 1∕2+ε, i.e., the exponent is almost a factor of two better up to the mentioned offset compared to single rank-1 lattice sampling. Various numerical tests in medium and high dimensions demonstrate the high performance and confirm the obtained theoretical results of multiple rank-1 lattice sampling.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.