Abstract
A minimax solution of the Cauchy problem for a functional Hamilton-Jacobi equation with coinvariant derivatives and a condition at the right end is considered. Hamilton-Jacobi equations of this type arise in dynamical optimization problems for time-delay systems. Their approximation is associated with additional issues of a valid transition from an infinite-dimensional functional argument of the desired solution to a finite-dimensional argument. Earlier, the schemes based on the piecewise linear approximation of the functional argument and the correctness properties of minimax solutions were studied. In this paper, a scheme for the approximation of Hamilton-Jacobi functional equations with coinvariant derivatives by usual Hamilton-Jacobi partial differential equations is proposed and justified. The scheme is based on the approximation of the characteristic functional-differential inclusions used in the definition of the desired minimax solution by ordinary differential inclusions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the Steklov Institute of Mathematics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.