Abstract

This paper investigates, for the first time in the literature, the approximation of min–max (regret) versions of classical problems like shortest path, minimum spanning tree, and knapsack. For a constant number of scenarios, we establish fully polynomial-time approximation schemes for the min–max versions of these problems, using relationships between multi-objective and min–max optimization. Using dynamic programming and classical trimming techniques, we construct a fully polynomial-time approximation scheme for min–max regret shortest path. We also establish a fully polynomial-time approximation scheme for min–max regret spanning tree and prove that min–max regret knapsack is not at all approximable. For a non-constant number of scenarios, in which case min–max and min–max regret versions of polynomial-time solvable problems usually become strongly NP-hard, non-approximability results are provided for min–max (regret) versions of shortest path and spanning tree.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.