Abstract

Within the framework of Bayesian inference, when observations are exchangeable and take values in a finite space X, a prior P is approximated (in the Prokhorov metric) with any precision by explicitly constructed mixtures of Dirichlet distributions. Likewise, the posteriors are approximated with some precision by the posteriors of these mixtures of Dirichlet distributions. Approximations in the uniform metric for distribution functions are also given. These results are applied to obtain a method for eliciting prior beliefs and to approximate both the predictive distribution (in the variational metric) and the posterior distribution function of ∫ψd $$\tilde p$$ (in the Levy metric), when $$\tilde p$$ is a random probability having distribution P.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.