Abstract
In the present paper, the representation, in different domains, of analytic functions by complex conformable fractional derivative bases (CCFDB) and complex conformable fractional integral bases (CCFIB) in Fréchet space are investigated. Results are proved to show that such representation is possible in closed disks, open disks, open regions surrounding closed disks, at the origin, and for all entire functions. Also, some results concerning the growth order and type of CCFDB and CCFIB are determined. Moreover, the ‐property of CCFDB and CCFIB is discussed. The obtained results recover some known results when . Finally, some applications to the CCFDB and CCFIB of Bernoulli, Euler, Bessel, and Chebyshev polynomials have been studied.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.