Abstract

Let K be a compact set in \( {{\mathbb R}^n} \). For \( 1 \leqslant p \leqslant \infty \), the Bernstein space \( B_K^p \) is the Banach space of all functions \( f \in {L^p}\left( {{{\mathbb R}^n}} \right) \)such that their Fourier transform in a distributional sense is supported on K. If \( f \in B_K^p \), then f is continuous on \( {{\mathbb R}^n} \) and has an extension onto the complex space \( {{\mathbb C}^n} \) to an entire function of exponential type K. We study the approximation of functions in \( B_K^p \) by finite τ -periodic exponential sums of the form $$ \sum\limits_m {{c_m}{e^{2\pi {\text{i}}\left( {x,m} \right)/\tau }}} $$ in the \( {L^p}\left( {\tau {{\left[ { - 1/2,1/2} \right]}^n}} \right) \)-norm as τ → ∞ when K is a polytope in \( {{\mathbb R}^n} \).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.