Abstract
We consider a variant \(E_{n,k}(N;r,r;p,p)\) of the four-parameter Stechkin problem \(E_{n,k}(N;r,s;p,q)\) on the best approximation of differentiation operators of order \(k\) on the class of \(n\) times differentiable functions \((0<k<n)\) in Lebesgue spaces on the real axis. We discuss the state of research in this problem and related problems in the spaces of multipliers of Lebesgue spaces and their predual spaces. We give two-sided estimates for \(E_{n,k}(N;r,r;p,p)\). The paper is based on the author's talk at the S.B. Stechkin's International Workshop-Conference on Function Theory (Kyshtym, Chelyabinsk region, August 1–10, 2023).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.