Abstract
The use of spectral methods for solution of boundary value problems is very effective but involves great technical difficulties associated with the implementation of the boundary conditions. There exist several methods of such an implementation, but they are either very cumbersome or require a preliminary analysis of the problem and its reduction to an integral form. We propose a universal means of implementation of the boundary conditions for linear differential operators on a finite interval, which is very simple in its realization. The use of the rational arithmetic allows to assess the effectiveness of this method without interference of the round-off errors. We apply this approach for computation of rational approximations for some fundamental constants. We obtained approximations that in a number of cases are better than those that are given by convergents of regular continued fractions of these constants.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Журнал вычислительной математики и математической физики
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.