Abstract

Biomolecular simulations are computationally expensive. This limits their application in drug or protein design and related fields. Several methods have been developed to address this problem. These methods often use an artificial force or potential acting on selected degrees of freedom known as collective variables. This requires explicit calculation of a collective variable (and its derivatives) from molecular structure. For collective variables that cannot be calculated explicitly or such calculations is slow we developed anncolvar package (https://github.com/spiwokv/anncolvar). This package approximates collective variables using artificial neural networks. It was tested on Isomap low dimensional representation of cyclooctane derivative or solvent-accessible surface area of Trp-cage miniprotein.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.