Abstract
The article is devoted to the problem of approximation of classes of periodic functions by rectangular linear means of Fourier series. Asymptotic equalities are found for upper bounds of deviations in the uniform metric of rectangular Fejér means on classes of periodic functions of several variables generated by sequences that tend to zero at the rate of geometric progression. In one-dimensional cases, these classes consist of Poisson integrals, namely functions that can be regularly extended in the fixed strip of a complex plane.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.