Abstract

We compare the cost complexities of two approximation schemes for functions $fin H^p(Omega_1times Omega_2)$ which live on the product domain $Omega_1timesOmega_2$ of sufficiently smooth domains $Omega_1subsetmathbb{R}^{n_1}$ and $Omega_2subsetmathbb{R}^{n_2}$, namely the singular value / Karhunen-L`oeve decomposition and the sparse grid representation. Here we assume that suitable finite element methods with associated {em fixed} order $r$ of accuracy are given on the domains $Omega_1$ and $Omega_2$. Then, the sparse grid approximation essentially needs only $mathcal{O}(varepsilon^{-q})$ with $q=frac{max{n_1,n_2}}{r}$ unknowns to reach a prescribed accuracy $varepsilon$ provided that the smoothness of $f$ satisfies $pge rfrac{n_1+n_2}{max{n_1,n_2}}$, which is an almost optimal rate. The singular value decomposition produces this rate only if $f$ is analytical since otherwise the decay of the singular values is not fast enough. If $p>rfrac{n_1+n_2}{max{n_1,n_2}}$, then the sparse grid approach gives essentially the rate $mathcal{O}(varepsilon^{-q})$ with $q=frac{n_1+n_2}{p}$ while, for the singular value decomposition, we can only prove the rate $mathcal{O}(varepsilon^{-q})$ with $q=frac{2min{r,p}min{n_1,n_2}+2pmax{n_1,n_2}}{(2p-min{n_1,n_2})min{r,p}}$. We derive the resulting complexities, compare the two approaches and present numerical results which demonstrate that these rates are also achieved in numerical practice. $p frac{n_1+n_2}{max{n_1,n_2}}$, then the sparse grid approach gives essentially the rate $mathcal{O} (varepsilon^{-q})$ with $q=frac{n_1+n_2}{p}$ while, for the singular value decomposition, we can only prove the rate $mathcal{O}(varepsilon^{-q})$ with $q=frac{2min{r,p}min{n_1,n_2} +2pmax{n_1,n_2}}{(2p-min{n_1,n_2})min{r,p}}$. We derive the resulting complexities, compare the two approaches and present numerical results which demonstrate that these rates are also achieved in numerical practi

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call