Abstract

We consider a discrete-time Markov decision process with Borel state and action spaces, and possibly unbounded cost function. We assume that the Markov transition kernel is absolutely continuous with respect to some probability measure . By replacing this probability measure with its empirical distribution for a sample of size n, we obtain a finite state space control problem, which is used to provide an approximation of the optimal value and an optimal policy of the original control model. We impose Lipschitz continuity properties on the control model and its associated density functions. We measure the accuracy of the approximation of the optimal value and an optimal policy by means of a non-asymptotic concentration inequality based on the 1-Wasserstein distance between and . Obtaining numerically the solution of the approximating control model is discussed and an application to an inventory management problem is presented.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.