Abstract

In this article we generalize the convolution quadrature (CQ) method, which aims at approximating the fractional calculus, to the case for the distributed order calculus. Our method is a natural expansion that the approximation formulas, convergence results and correction technique reduce to the cases for the CQ method if the weight function \begin{document}$ \mu(\alpha) $\end{document} is defined by \begin{document}$ \delta(\alpha-\alpha_0) $\end{document} . Further, we explore a new structure of the solution of an ODE with the distributed order fractional derivative, which differs from those of the solutions of traditional fractional ODEs, and propose a new correction technique for this new structure to restore the optimal convergence rate. Numerical tests with smooth and nonsmooth solutions confirm our theoretical results and the efficiency of our correction technique.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.