Abstract
In [3] Fuller introduced an index (now called the Fuller index) in order to study periodic solutions of ordinary differential equations. The objective of this paper is to give a simple generalisation of the Fuller index which can be used to study periodic points of flows in Banach spaces. We do not claim any significant breakthrough but merely suggest that the simplistic approach, presented here, might prove useful for the study of non-linear differential equations. We show our results can be used to study functional differential equations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.