Abstract

For interpolation of smooth functions by smooth kernels having an expansion into eigenfunctions (e.g., on the circle, the sphere, and the torus), good results including error bounds are known, provided that the smoothness of the function is closely related to that of the kernel. The latter fact is usually quantified by the requirement that the function should lie in the “native” Hilbert space of the kernel, but this assumption rules out the treatment of less smooth functions by smooth kernels. For the approximation of functions from “large” Sobolev spaces W by functions generated by smooth kernels, this paper shows that one gets at least the known order for interpolation with a less smooth kernel that has W as its native space.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.