Abstract

In this paper, we attempt to use the Dunkl analog to study the convergence properties of q-Phillips operators by using the q-Appell polynomials. By applying the new sequences of continuous functions νs,q(z)=(z−12[s]q)ϱ\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$\ u _{s,q}(z)=\\Bigl(z- \\frac{1}{2[s]_{q}}\\Bigr)_{\\varrho}$\\end{document} on [0,∞)\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$[0, \\infty )$\\end{document}, we construct an improved version of the q-Phillips operators. We calculate the qualitative outcomes in weighted Korovkin spaces to better understand the Phillips operators’ uniform convergence results. We obtain the approximation properties by use of the modulus of continuity and functions belonging to the Lipschitz class. Moreover, we give some direct theorems for the function belonging to Peetre’s K-functional.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.