Abstract

For approximations in the space L2(ℝ+) by partial integrals of the Fourier transform over the eigenfunctions of the Sturm–Liouville operator, we prove Jackson’s inequality with exact constant and optimal argument in the modulus of continuity. The optimality of the argument in the modulus of continuity is established using the Gauss quadrature formula on the half-line over the zeros of the eigenfunction of the Sturm–Liouville operator.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.