Abstract

AbstractApproximation Fixpoint Theory was developed as a fixpoint theory of lattice operators that provides a uniform formalization of four main semantics of three major nonmonotonic reasoning formalisms. This paper clarifies how this fixpoint theory can define the stable and well-founded semantics of logic programs. It investigates the notion of strong equivalence underlying this semantics. It also shows the remarkable power of this theory for defining natural and elegant versions of these semantics for extensions of logic and answer set programs. In particular, we here consider extensions with general rule bodies, general interpretations (also non-Herbrand interpretations) and aggregates. We also investigate the relationship with the equilibrium semantics of nested answer set programs, on the formal and the informal level.KeywordsLogic ProgramLogic ProgrammingStable ModelPredicate SymbolStable Model SemanticThese keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.