Abstract

In this paper, we develop approximation error estimates as well as corresponding inverse inequalities for B-splines of maximum smoothness, where both the function to be approximated and the approximation error are measured in standard Sobolev norms and semi-norms. The presented approximation error estimates do not depend on the polynomial degree of the splines but only on the grid size. We will see that the approximation lives in a subspace of the classical B-spline space. We show that for this subspace, there is an inverse inequality which is also independent of the polynomial degree. As the approximation error estimate and the inverse inequality show complementary behavior, the results shown in this paper can be used to construct fast iterative methods for solving problems arising from isogeometric discretizations of partial differential equations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.