Abstract
In this paper, we prove that for any real number ξ, which is not an algebraic number of degree , there exist infinitely many real algebraic units α of degree n + 1 such that . We also show how the flexibility of H. Davenport and W. M. Schmidt’s method allows to replace, with the same exponent of approximation, units of degree over Z (i.e. elements α with both α and integral over Z) by units of degree over a finite intersection .
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.