Abstract
In this article, a novel Schurer form of λ-Bernstein operators augmented by Bézier basis functions is presented by utilizing the features of shifted knots. The shifted knots form of Bernstein operators and the Schurer form of the Bézier basis function are used in this article, then, new operators, the Schurer type λ-Bernstein shifted knots operators are constructed in terms of the Bézier basis function. First, the test functions are calculated and the central moments for these operators are obtained. Then, Korovkin’s type approximation properties are studied by the use of a modulus of continuity of orders one and two. Finally, the convergence theorems for these new operators are obtained by using Peetre’s K-functional and Lipschitz continuous functions. In the end, some direct approximation theorems are also obtained.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.