Abstract

We present an approximation method for discrete time nonlinear filtering in view of solving dynamic optimization problems under partial information. The method is based on quantization of the Markov pair process filter-observation (Π, Y) and is such that, at each time step k and for a given size Nk of the quantization grid in period k, this grid is chosen to minimize a suitable quantization error. The algorithm is based on a stochastic gradient descent combined with Monte Carlo simulations of (Π, Y). Convergence results are given and applications to optimal stopping under partial observation are discussed. Numerical results are presented for a particular stopping problem: American option pricing with unobservable volatility.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.