Abstract

We show that the complexity of a parabolic or conic spline approximating a sufficiently smooth curve with non-vanishing curvature to within Hausdorff distance ɛ is c1ɛ−1/4 + O(1), if the spline consists of parabolic arcs, and c2ɛ−1/5 + O(1), if it is composed of general conic arcs of varying type. The constants c1 and c2 are expressed in the Euclidean and affine curvature of the curve. We also show that the Hausdorff distance between a curve and an optimal conic arc tangent at its endpoints is increasing with its arc length, provided the affine curvature along the arc is monotone. This property yields a simple bisection algorithm for the computation of an optimal parabolic or conic spline.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.